Cybercorps LLC plans to offer real-time agricultural data for farmers, resource managers, first responders, and other interested user groups with the help of a patented NASA technology.
Georgia-based company Cybercorps has signed a license agreement with NASA for the Compact Thermal Imager (CTI), a technology developed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The technology, conceived at Goddard by CTI Principal Investigator Murzy Jhabvala, is small enough to fit on a cube satellite, or CubeSat, a type of miniaturized satellite whose size is measured in units of 10 square centimeters that plays a growing role at NASA for science missions and technology demonstrations.
Though tiny in size, CTI can provide high-resolution information about crop health and soil conditions by measuring surface temperature. After collecting more than 15 million images of Earth during a successful demonstration on the International Space Station in 2019, the instrument is now ready for commercial use.
Text continues underneath image
“Technologies like CTI were developed for research purposes, but they often have additional applications outside of pure science,” said Eric McGill, a senior technology manager with the Strategic Partnerships Office at Goddard. “In this case, infrared imaging can play an important role in monitoring crop health and helping members of the agricultural community yield better harvests.”
The CubeSat that will carry CTI will capture thermal images while pointed at Earth’s surface. Farmers and other interested customers can subscribe to Cybercorps’ service to access the thermal imaging data, which can be used to evaluate the health of agricultural and aquatic ecosystems. In combination with more traditional techniques, this bundle of information could help farmers optimise fertiliser treatments and watering schedules.
“This instrument is very versatile,” said Compton Tucker, a senior Earth scientist at Goddard and co-investigator for CTI. “As a new technology, it has tremendous usage potential in biomass burning and crop surface temperature.”
CTI
CTI was installed on the space station in 2019 as part of the Robotic Refueling Mission 3, with the goal of qualifying Strained Layer Superlattice (SLS), an advanced detector technology. SLS is an improved version of the detector technology that is part of the thermal infrared sensor on Landsat 8 and the upcoming Landsat 9. CTI instrument development was supported and funded by NASA’s Earth Science Technology Office (ESTO) under the Sustainable Land Imaging Technology program.
Subscribe to our newsletter to stay updated about all the need-to-know content in the agricultural sector, two times a week.